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A conceptually simple model for protein-folding phenomena has been created: it is two-dimensional
and has only two different “amino acids.” Ground-state conformations have been determined for all of
its flexible polypeptides containing seven or fewer monomers. This complete database displays a wide
geometric variety of folded shapes and shows that single point mutations in some cases induce substan-
tial folding modifications. Neural-network concepts have been employed to analyze results. The sim-
plest static neural networks required to act as error-free read-only memories provide a way to visualize
the logical structure of underlying folding principles. The topologies of optimal networks found thus far
suggest that protein folding has a more complex cooperative character than has been embodied previous-

ly in theoretical approaches.

PACS number(s): 87.10.+e¢, 87.15.By, 42.79.Ta

I. INTRODUCTION

Protein-folding phenomena present a daunting group
of scientific challenges. Perhaps this is inevitable, since
only a complex and diverse family of molecules could
fulfill proteins’ assigned roles in basic biological process-
es. The large and still rapidly growing literature on the
subject of protein folding [1-3] chronicles many remark-
able advances in both experiment and theory, yet this
remains an open problem. Given an arbitrary but fully
specified sequence of amino acids, we cannot yet predict
the folding pathway of the corresponding polypeptide,
the conformation of the final state, nor even verify in all
cases whether that final state is one of lowest free energy
or simply a metastable “trap” in the kinetic folding path-
way.

The strategy selected for the present paper seeks a few
modest insights by introducing and exploiting a highly
simplified “toy model.”” Its motivation is roughly analo-
gous to that behind the Ising [4] or Heisenberg [5] models
for magnetism: namely to strip away distracting detail in
the hope of attaining more penetrating insights. One ma-
jor advantage of the toy model is that it becomes feasible
to determine a complete database of ground-state struc-
tures for all “polypeptides” up to some modest (but non-
trivial) degree of polymerization. In this respect our ap-
proach avoids uncertainties stemming from incomplete-
ness of the real protein-structure database [1]. It also
permits an application of neural-network concepts [6] to
the interpretation of our model’s behavior.

Section II defines our “toy model;” Sec. III presents
some of its general properties. Ground-state energies and
structures have been determined for all species containing
seven or fewer residues, and Sec. IV covers the results of
this comprehensive search. Section V introduces the con-
cept of “optimal neural network” for exact representa-
tion of our gap-free database, as a means of uncovering
the deep logic of the protein-folding patterns. Section VI
contains a reprise and assessment of the toy model, its re-
sults, and prospects for evolution toward greater realism.
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II. THE MODEL

Our model incorporates only two “amino acids,” to be
denoted by A4 and B, in place of the 20 that occur natu-
rally. They will be linked together by rigid unit-length
bonds to form linear unoriented polymers that reside in
two dimensions. As Fig. 1 illustrates, the configuration
of any n-mer is specified by the n —2 angles of bend
0,,...,0,_, at each of the nonterminal residues. We
adhere to the conventions that

—7T=0;,<m, (2.1)

that 0; =0 corresponds to linearity of successive bonds,
and that positive angles indicate counterclockwise rota-
tion.

We postulate that two kinds of interactions compose
the intramolecular potential energy for each molecule:
backbone bend potentials (¥) and nonbonded interac-
tions (V,). The former will be independent of the A4,B
sequence, while the latter will vary with that sequence
and will receive a contribution from each pair of residues
not directly attached by a backbone bond.

Residue species along the backbone can be convenient-
ly encoded by a set of binary variables §;  §,. If §;=1,
the ith residue is 4; if £;= —1, it is B. The intramolecu-
lar potential-energy function @ thus can be expressed as
follows for any n-mer:

n—1 n—2 n

b= z V1(61)+ 2 2 Vz(rij’gi’gj) .

i=2 i=1j=i+2

(2.2)

The distances r;; can be written as functions of the inter-

vening angles (recalling that backbone bonds have unit
length):
2 ]1/2
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FIG. 1. A schematic diagram of a generic 9-mer, with serial-
ly numbered residues, and backbone bend angles.

In the following we shall not consider intermolecular in-
teractions.
Our model assigns a simple trigonometric form to V;:

V(8;)=1(1—cosb;) . (2.4)
The nonbonded interactions ¥, have a species-dependent

Lennard-Jones 12,6 form:
VZ(rij,gi’gj):4[rij_12_c(§i’§j )rij_6] > (2.5)
C(§;,8;)=5(1+&,+&;+55,¢;) . (2.6)

On account of Eq. (2.4), successive bonds would tend to-
ward linearity (6; =0), if nothing else mattered.

The coefficient C(§;,§;) is +1 for an 44 pair, + fora
BB pair, and — 1 for an 4B pair. Consequently the first
of these pairs may be regarded as strongly attracting, the
second as weakly attracting, and the third as weakly re-
pelling. This diversity mimics in a simple way that of
real amino-acid residues, which vary in size, polarity, and
degree of hydrophobicity [1]. In fact, results presented
below imply that 4 and B behave respectively as hydro-
phibic and hydrophilic residues. As will become clear in
Sec. III and 1V, the interplay between the backbond bend
interaction that tends to produce linear structures, and
the various combinations of attractive and repulsive non-
bonded pair interactions, generates a wide range of
ground-state geometries. It is in this last respect that our
toy model remains faithful to the character of real pro-
teins.

The description given so far for our model makes no
mention of solvent. However, one has the option to in-
clude the effects of a solvent medium, at least implicitly,
by interpreting ® in Eq. (2.2) as an intramolecular poten-
tial of mean force [7,8].

HII. GENERAL FEATURES

A. Enumeration

Two choices exist for each residue of an rn-mer, namely
A or B. If this linear polymer had an intrinsic direc-

tionality to its backbone, the number of distinguishable
molecules would be simply 2”. But that directionality is
missing. Any molecule (§;,...,§,) is fundamentally in-
variant under sequence reversal (£,,...,&;), implying a
reduction in the number of distinguishable n-mers.
Consider first the case of » =2m, an even integer. If
the n-mer is cut at its middle bond, each half that results
has directionality. Consequently there are 2™ distin-
guishable half-molecules. Rebonding each of these with
its own kind yields 2™ different centrosymmetric mole-
cules. Noncentrosymmetric molecules are reconstituted
by bonding inequivalent halves; this can occur in 1 (2™)

(2™—1) ways. Adding these to the centrosymmetric
count yields
N@2m)=2""12"+1) (3.1)

for the number of distinguishable (2m)-mers.

The number of distinguishable (2m + 1)-mers follows
trivially, since each of them corresponds uniquely to the
insertion of a single residue in the center of a (2m)-mer.
The insertion can be either of two possibilities, 4 or B.
Consequently,

N(2m+1)=2"(12"+1) . (3.2)

B. Interaction of parallel chains

In order to illuminate the tendency of the model mole-
cules to fold into compact globular form, we now present
an elementary calculation for the interaction of two
parallel strands, each linear, with separation D large
compared to the bond length. For present purposes these
are viewed as portions of the same molecule with a very
high degree of polymerization, connected through a re-
mote turn; but they could have equally well been parallel
linear strands from distinct molecules.

Let x and y, respectively, be the fractions of A residues
in the two chains. Under the given assumption of wide
separation, it is only these gross compositions that should
matter, not the specific residue sequence details. Further-
more D >>1 requires only accounting for the r,-fﬁ terms
in the nonbonded interactions ¥, acting between the
chains.

The net interaction of an A residue on the ‘“x” strand
with all residues on the ‘‘y” strand can be estimated by
the following integral (s measures distance along the
latter strand):

+ ds
R A e

:(1—3y)f°° dt '
D° Yo (1+41¢?)
The corresponding result for a B on the ‘“x” strand is
+ o0 ds
i e LN v
2y—1) p=_dt
D3 Jo (1422}

The interaction per unit length between the strands re-

(3.3)

(3.4)
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FIG. 2. Regions of net attraction (—) and of net repulsion
(+) for two widely separated, linear, parallel strands. Variables
x and y stand for the fractions of A residues in the two strands.

quires weighting (3.3) by x, (3.4) by (1—x), and adding;
the result is
[—14+2(x +y)—5xy] re dt

D? o (1+¢2)

37
= —1+2(x +y)—5xy] .
16D 51 y v ]
The quantity shown in Eq. (3.5) is negative along the
equal-composition line x =y, indicating net interstrand
attraction. More generally, it changes sign across the hy-
perbolic locus:

(3.5)

_1—2x

- _1=2
2—5x

xX=2_ sy
Figure 2 illustrates the resulting sign regions in the
relevant unit square of the x,y plane.

If x,y lies anywhere in the net attractive region of Fig.
2, and if the two strands are long enough, the molecule
will always find it favorable to fold. The energy required
to produce a U turn is positive but fixed, whereas the sta-
bilization between the strands grows linearly with their
length. If x,y lies in either net repulsive region of Fig. 2,
this scenario is not directly applicable. But if, as as-
sumed, the strands are indeed very long each will fold
back on itself to lower the energy because points x,x and
»,y both lie in the net attractive region.

Consequently we must conclude that if the degree of
polymerization is sufficiently high, the ground-state
structure of all toy model proteins must be folded.

y (3.6)

IV. GROUND STATES

For any number n of residues, and for any given se-
quence of those n residues specified by &,..,§,, the
potential-energy function @ is precisely defined, and in
principle can be minimized with respect to the conforma-
tional angles 6,,...,60,_;. In practice this is easy for
small n (i.e., 3,4, and 5), but becomes increasingly tedious

and demanding as n increases. Our goal has been to gen-
erate and interpret a database of ground states that is
complete through the maximum feasible value of n, that is
to say all molecular ground states were to be obtained for
this or a smaller number of residues.

The search for ground states has been carried out
through heptamers (n =7). A mixed strategy was used,
relying both on steepest-descent minimizations on the ®
hypersurfaces from a wide variety of random and ‘“hand-
picked” starting points, as well as a Monte Carlo simulat-
ed annealing procedure. Repeated application of these
approaches has provided checks on results, and we feel
confident that indeed all » <7 ground states have been
correctly identified.

The simple case of the trimers (n =3) provides an in-
troductory illustration. The six distinct molecules are
AAA, AAB, ABA, ABB, BAB, and BBB. Each has
only a single bend degree of freedom 6,. Furthermore,
the potential energy as specified in Sec. II above depends
only on the species of the terminal residues, and not on
that of the central residue. Consequently there are just
three distinct cases to consider: AX A, AXB, and BXB.
Figure 3 shows the potential-energy curves vs 6, for each
of these.

It is obvious from Fig. 3 that the AXB and BXB tri-
mers are linear in their ground states. That is certainly
expected for AXB, where the terminal residues repel each
other at all separations. Even though modest terminal
residue attraction exists for BXB, the bend potential ener-
gy is sufficiently costly that the possibility of an absolute-
ly stable bent shape is eliminated. Only when both termi-
nals are A is the nonbonded interaction sufficiently at-

| | | |
-1.0
0 30 60 90 120

6, (deg)

FIG. 3. Bend potential-energy curves for trimers. Results
are independent of the central residue’s species, denoted here by
X.
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tractive to generate a bent ground state; 6, is approxi-
mately £111.4° in this nonlinear structure. But notice
also that the AXA molecules retain the linear form as a
metastable (relative) ® minimum, and BXB molecules
have a bent metastable minimum; this is the first appear-
ance of a multiple minimum problem that magnifies
dramatically in severity as the molecules increase in resi-
due number.

Table I collects and displays ground-state energies and
backbond bend angles for all trimers (6), tetramers (10),
and pentamers (20). Several protocols control the presen-
tation in Table I in order to simplify and standardize the
information:

(a) Molecules are listed in alphabetical order for each
number of residues, and, in the case of sequences differing
only by reversal, only the first in alphabetical order ap-
pears. Thus 4 A4 AB appears in the tetramer grouping

TABLE 1. Ground-state properties of toy-model polypep-
tides. Angles 0; are measured in radians. Hexamer and hepta-
mer results are not listed, but are available upon request from
the authors.

Molecule L] 0,/m 6s/m O4/m
AAA —0.65821 0.61866

AAB 0.03223 0.00000

ABA —0.65821 0.618 66

ABB 0.03223  0.00000

BAB —0.03027 0.00000

BBB —0.03027 0.00000

AAAA —1.67633 0.61839 0.33920

AAAB —0.58527 0.61759 —0.05130

AABA —1.45098 0.33270 0.621 80

AABB 0.06720 0.00000 0.00000

ABAB —0.64938 0.61767 —0.066 70

ABB A —0.03617 0.47690 0.476 90

ABBB 0.00470 0.00000 0.000 00

BAAB 0.06172  0.00000 0.000 00

BABB —0.00078 0.00000 0.00000

BBBB —0.13974 0.55828 0.351 80

AAAAA —2.84828 0.33597 0.62022 0.04543
AAAAB —1.58944 0.61898 0.33748 —0.068 94
AAABA —2.44493 0.29723 0.33306 0.62176
AAABB —0.54688 0.61756 —0.05373 —0.001 68
AABAA —2.53170 0.32943 0.623 54 0.04551
AABAB —1.34774 0.33269 0.62133 —0.54574
AABBA —0.92662 0.16722 0.48228 0.47327
A ABBB 0.04017 0.00000 0.000 00 0.000 00
ABAAB —1.37647 0.62222 0.33110 —0.063 03
ABABA —2.22020 0.61900 0.047 39 0.61900
AB ABB —0.61680 0.61765 —0.07104 —0.002 24
ABBAB —0.00565 0.478 80 0.47341 —0.141 84
ABBB A —0.39804 0.24576 0.555 51 0.24576
ABBBB —0.06596 0.054 89 —0.34237 —0.56178
BAAAB —0.52108 0.03924 —0.61671 0.03924
BAABB 0.09621  0.000000 0.000 00 0.000 00
BABAB —0.64803 0.05328 —0.616 82 0.05328
BABBB —0.18266 0.569 20 0.33574 0.266 59
BB ABB —0.24020 0.31773 0.57642 0.097 38
BBBBB —0.45266 0.34345 0.56501 0.093 18
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while BA A A does not; and A A AB precedes A AB A.

(b) The residues are numbered sequentially from left to
right (e.g., 4B, A3;B4B;).

(c) Angles in radians are normalized by 7 for conveni-
ence of applications to the neural networks discussed in
Sec. V.

(d) In some cases, the ground states appear as mirror-
symmetric pairs, or even quadruplets. The bent AX A
trimers supply the simplest examples of pairs, 4444
being an example of the quadruplet. We cope with this
degeneracy by consistently choosing the potential-energy
minimum with the most positive 8, value.

Extension of Table I to include hexamers (36) and hep-
tamers (72) would be unwieldly. However, the informa-
tion is available from the authors on request.

Notice that the fraction of molecules with linear
ground states (8,=6;= - -+ =6, _;=0) declines with an
increasing number of residues. These represent 2 of the
trimer entries in Table I, Z of the tetramer entries, and %
of the pentamer entries. Furthermore, only a single
linear ground state appears among the hexamers (%),
and none among the heptamers. In connection with the
argument presented in Sec. III B above, it appears likely
that no linear ground states for any sequence will be
found for n > 6. In spite of this, we find that every se-
quence has the linear structure as a local ® minimum.

Although only two distinct shapes, bent and linear, ap-
pear among the trimer ground states, the tetramers
present far greater diversity. Figure 4 illustrates this
point, distinguishing four families: ‘“linear,” “‘symmetric
globular,” ‘“asymmetric globular,” and ‘“switchback.”
Even greater diversity (Fig. 5) appears in the pentamer
group (a trend that continues for hexamers and hepta-
mers). In many cases we have found that the molecules
experience interfamily transitions upon excitation from
the ground state to metastable states. Note also that

Tetramer Ground States

Linear: A—A—B—B
A—B—B—B
B—A—A—B
B—A—B—B

Symmetric Globular:

A A
\
B—B
Asymmetric Globular:
/A /A /A /A /B /B
A—A B—A B—B
Switchback:
/A A
A—A B—A
B B

FIG. 4. A schematic illustration of the shape families of the
tetramer ground states.
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point mutations (single monomer change) can either
preserve or drastically alter ground-state structure.

V. NEURAL NETWORKS

We have drawn upon the neural-network concept to
aid in the interpretation of the ground-state database re-
ported in Sec. IV. Specifically we have considered static
feed forward networks [9], and have required that they
perform perfectly as read-only memory devices for the
backbone bend angles of the toy polypeptides. For each
complete group of n-mers, subject to the protocols in-
voked in Sec. IV, inputting the binary sequence code
&, ...,&, must produce the correct set of normalized
angles 0, /m, . ..,0, _/m as output.

The “neurons” which compose our network all possess
the same ““clipped linear” response function:

-1 (x=<-—1)
R(x)=ix (—1l<x<1) (5.1)
1 (1=<x).

Neuron 1 receives inputs I;; from sources k (either exter-
nally supplied &;’s, or outputs of neurons preceding it in
the network); each of these is delivered with weight wy,.
The output of neuron 1 is

01 =R Ewkllkl+bl ’ (52)
k

where b, is the bias for that neuron. The last layer of the
network will contain n —2 neurons, each with the task of
delivering the correct value of a 8, /7 as its output.

While surveying alternative architectures (i.e., connec-
tion schemes) for perfectly performing neural networks, it
is useful to assign a figure of merit f to each candidate.
This is simply the number of neurons plus the number of
interconnections. It is thus also the number of weights
wy; and biases b; that must be determined to make the
network perform in an error-free manner. Note that a
connection with vanishing weight is no connection at all
and does not contribute to f. We have been interested in
determining optimal neural networks for each n-mer
group, namely those with the smallest possible value of f.

The optimal network for trimers is easily found, and is
almost trivial. It has f =2, and is illustrated in Fig. 6.
There the single neuron required has been symbolized by
a circle, and the quantity within that circle is its bias
b=0* /2, with 0* denoting the stable bend angle for the
nonlinear AX A4 trimers. The single input channel to the
neuron carriers weight w=6*/27. As a result of the
data protocol, 6, has a value O or 6* depending only on
the residue species variable &5, and the network graphi-
cally illustrates this point by failing to connect to the &,
and &, input nodes.

It must be stressed that we only require the networks
to perform properly for the sets of input sequences
&, ...,&, admitted by the imposed protocol. The num-
bers N(n) of these allowed sequences, Egs. (3.1) and (3.2),
are substantially smaller than 2", the numbers of unre-
stricted sequences. Indeed it is clear that even the simple
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Pentamer Ground States

A—A—B—B—B B—A—A—B—B

/N A A
A/ N A/ \A B B B/ \B
/ AN / AN / —A—
B B B B A A
A—A A—A B—B B—B\
A—p—A A—a—B B—B—A B—p—B
A—tla A——? B—-:‘i\
A A B
SaA—B SA—A ~B—8B
A—A B—A B—B
\ \A A \B B
B B ™A
B—A A A B
| A/——A B/—A A AT
B—A_ N ~ AN
B B B B—A
B B

FIG. 5. Shape families of the pentamer ground states.

trimer network in Fig. 6 will “misperform” if fed a disal-
lowed sequence (such as —1, 1, 1). However, this
represents no loss of basic folding information.

Although one expects perfectly performing networks
to be more complicated for larger n, at least assurance ex-
ists that some finite architecture is available for every n.
The Appendix presents the argument, and leads to an
upper bound for the optimal figure of merit:

Fopt(M)S(n+4N(n)+n—2 . (5.3)

Our limited experience indicates that f,, tends to be
considerably smaller than this bound; for trimers, we
have seen f,,(3)=2, whereas (5.3) merely specifies
Sopt(3)=43.

The searches for optimal tetramer and pentamer net-
works have employed a combination of Monte Carlo pro-

g —e
6.
E,—>® 'n_2
e*
§3—> Z

Data Flow
Direction

FIG. 6. The optimal network for trimers (figure of merit
f =2). The stable bend angle for AX A trimers (111.4°,1.9436
rad) has been denoted by 6*.
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&4

A=0

cedures. These have started with a variety of candidate
network topologies, and have respectively generated ap-
proximately 10°-10° random sets of weights and biases.
For each, small random changes in weights and biases
were produced, with a test to see if the rms difference be-
tween the database and the network predictions of all ele-
ments of the database was thereby reduced. This process
was continued until either a perfectly performing net-
work emerged (rms error below 10™°), or trapping in a lo-
cal rms minimum with unacceptable error occurred. The
majority of cases suffered the latter fate. In those few
cases that were successful, attempts to reduce f were ini-
tiated, pruning out weakly weighted connections one by
one with adjustments of remaining weights and biases to
restore perfect performance. This evolutionary stream-
lining would eventually terminate, as further pruning be-
came impossible.

Figure 7 displays the simplest tetramer network
discovered by this search. Although we have no proof,
we believe it is optimal. It possesses two ‘“‘hidden layers,”
each of a single neuron, interposed between the four in-
put nodes and the two output neurons. The figure of
merit =19 may be compared with the upper bound of
82 given by Eq. (5.3). This dramatic reduction in f below
that value for the banal “overkill” network (see Appen-
dix) lends credence to the proposition that optimal net-
works image the fundamental logic of folding.

Weights and biases in the tetramer network have been
determined to at least ten significant figures of accuracy
by the rms reduction procedure. However, they have
been rounded off to four decimal places for convenience
in Fig. 7. Notice the degeneracy regarding connection
weights from the &, and &; input nodes to the first
hidden-layer neuron: an arbitrary positive number A can,
respectively, be subtracted from and added to these con-
nection weights without changing the error-free network
performance. The existence of this invariance stems from
the nonlinearity of the neural response function R, Egq.
(5.1).

Bend angles 6; never attain values =7 on account of
the 12 term in V,, Eq. (2.5). Consequently, output neu-
rons always operate in their linear ramp regimes. By
contrast, hidden-layer neurons are frequently saturated

0,
3
FIG. 7. The optimal tetramer network, with
f=19. Notice the invariance with respect to
A, subject to the inequality shown.
63
™

(i.e., in the flat response regimes). As the tetramer net-
work in Fig. 7 runs through the ten independent allowed
inputs, the first hidden-layer neuron is saturated in six
cases, the second hidden-layer neuron is saturated in five.

The simplest pentamer networks uncovered by our
Monte Carlo search and refinement exhibit the generic
architecture indicated in Fig. 8. Three hidden layers,
each composed of two neurons, reside between the five in-
put nodes and three output neurons. If all possible con-
nections were present in this design, the figure of merit
would be f=84. Once again this lies well below the
upper bound in Eq. (5.3), namely 183.

A tedious search for the lowest figure of merit in this
family of pentamer networks has reduced f to 70 by
pruning out 14 connections. This apparent optimum is
attained by a continuous subfamily of networks with
parametric variation of weights and biases, analogous to
that found for tetramers. But in contrast to that former
case, the variations affect all but six weights and one bias,
and do not appear to have a simple linear representation
as before. Table II provides the weights and biases for
one subfamily member.

§1. 12 k
g, 6 8 10 "
O O O =
E,® ]
7 9 11 &
L O OO0
94
£, ® B

~"
3 Hidden Layers

Figure of Merit < 84

FIG. 8. The generic architecture of the simplest pentamer
networks discovered.



48 TOY MODEL FOR PROTEIN FOLDING 1475

VI. CONCLUSIONS

By limiting attention just to two dimensions, and to
two kinds of monomers (“amino acids”), it has been pos-
sible to formulate a very simple but useful toy model for
protein folding. A wide variety of ground-state struc-
tures arise, dependent on the number of monomers
present and on their sequence. This diversity stems from
the competition between the backbone bend portion of
the potential energy and the nonbonded interactions be-
tween pairs of amino-acid residues. A complete database
of ground-state energies and structures has been created
for all model polypeptides with seven or fewer residues.

Neural networks offer a way to analyze and to visualize

the folding database for the toy model. Specifically we
have created static feed-forward networks that act as
error-free read-only memories; upon being fed the residue
sequence as binary input, they yield the correct backbone
bend angles for that case. These networks are not
unique, but we have stressed the importance of those
with optimal architecture, namely a minimum number of
neurons plus interconnections.

Neural networks thought to be optimal for trimers, te-
tramers, and pentamers were presented in Sec. V. We
have proposed that their topologies constitute an image,
or logical flow diagram, of the basic physical principles
that underlie the folding patterns in the model. In partic-
ular, they indicate that generally the folding is a nonlocal,

TABLE II. Weights and biases for an optimized pentamer network (f=70). The numbering scheme conforms to Fig. 8.

Element Value Element Value
w(1,6) —0.6154 w(6,8) —0.1799
w(1,7) —0.7188 w(6,9) —0.1610
w(l1,8) 0.7134 w(6,11) —0.9275
w(1,9) 0.8246 w(6,12) 0.0048
w(1,10) —1.2748 w(6,13) 0.7030
w(l,11) —0.2623 w(6,14) 0.0965
w(l1,12) —0.8640
w(1,13) —0.2825 w(7,8) 0.3389
w(7,9) 0.2747
w(2,6) 1.0515 w(7,10) —1.0650
w(2,7) 0.3240 w(7,11) —0.3724
w(2,8) —0.1779 w(7,12) 0.1606
w(2,9) —0.8761 w(7,13) 0.2045
w(2,10) 0.8235 w(7,14) —0.7284
w(2,11) 0.7100
w(2,13) —0.3508 w(8,11) —0.6252
w(2,14) —0.0495* w(8,12) 0.4413
w(8,13) 0.5943
w(3,6) 1.1435
w(3,7) 1.5005 w(9,10) —0.3902
w(3,8) —0.8562 w(9,11) 0.4274
w(3,10) —0.6807 w(9,12) 0.1303
w(3,11) —0.2358 w(9,13) 0.8388
w(3,14) 0.6088
w(10,12) 0.0515
w(4,7) —0.5580 w(10,14) 0.6196
w(4,8) —0.2574
w(4,9) —0.5930 w(l11,12) —0.2059
w(4,10) 1.1252 w(11,13) 0.7112
w(4,12) 0.1604 w(ll,14) —0.6132
w(4,13) 0.4078*
w(4,14) —0.4097 b(6) —0.1143
b(7) 0.2566
w(5,6) —0.6054 b(8) 0.3667
w(5,7) 0.1978 b(9) 1.4137
w(5,8) —0.5262 b(10) 0.8513
w(5,9) —0.3006 b(11) —0.2154
w(5,12) 0.0954* b(12) 0.0735
w(5,13) 0.4489° b(13) —0.1862
w(5,14) 0.4038 b(14) 0.0714%

2Invariant values over the optimal network subfamily.
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highly cooperative process.

Suppose, hypothetically, that the bend angle 6; were to
depend only on the numerical position i along the chain,
as well as the species of the residue at that position. Then
moving backward through the network from the 6,/
output location, one would only have a path to the &; in-
put node, and would encounter no branching that would
allow access to other input nodes. More generally, one
might suppose that 6; depended on numerical position i,
as well as the local species sequence at i —1, i, and i +1;
this would admit path branching from the 8; /7 output to
the three successive input nodes for &;_,, &;, and &,
but not others. Disregarding the trivial trimer case, the
apparently optimal tetramer and pentamer networks fail
to display this simplifying feature, but instead show that
each output is connected, if only indirectly, to each input
node.

It strikes us as unlikely that optimal networks for hexa-
mers, heptamers, etc. will be any simpler in this input-
output connection sense. Whatever the specific details of
the hidden-layer architecture, we expect every pair of in-
put and output channels to have at least one direct or in-
direct connection pathway. The information processing
carried out within the optimal error-free network defines
and utilizes collective species variables that incorporate
information about the entire sequence. This in turn sug-
gests that any procedure which utilizes only local se-
quence information to predict folded structure is intrinsi-
cally imprecise, whether applied to a simple model such
as that considered in this paper, or applied to real pro-
teins [10—14].

Recent theoretical literature for protein folding con-
tains other examples of simplified models relying on just
two “‘amino acids.” Some of these utilize a discrete lat-
tice space, freely jointed chains, and simplified nearest-
neighbor interactions [15,16]; this tends to produce con-
siderable degeneracy in ground states for at least some se-
quences. Other versions incorporate more elaborate
backbone (local) interactions, but retain a lattice space,
and nearest-neighbor interactions for nonbonded residue
pairs [17].

The elementary toy model studied here is one of the
simplest nontrivial possibilities that might have been con-
sidered. Obviously it permits extensions or generaliza-
tions in any of several directions that would move it
closer to the real world of proteins. These include use of
more amino acids, more degrees of freedom per residue
(both backbone and side chain), and transfer from two to
three dimensions. For clarity this should be implemented
stepwise, with repeated attention to the architecture of
optimal neural networks to reveal the logical structure of
folding principles. The end results of a systematic study
along these lines should substantially strengthen our in-
sights into the behavior of real proteins.

APPENDIX

Choose a specific n-mer sequence o permitted by the
protocol and denote its binary code by &, ...,&,,. Its
bend angles will be 6,,,...,6, ,_;. Then consider the
modular network unit illustrated in Fig. 9(a). The con-

,51
&
: Output

0. /n

(b) Output Neuron for Bend Angle 6,

FIG. 9. Structures used for the “overkill” networks.

nections bear weights shown next to their directed lines,
and the biases of the neurons appear inside their symbolic
circles. One easily verifies that the output of this modu-
lar unit is always O, except for its special sequence
Eo1r -+ - »Exn>, Which stimulates output 1. Hence each
modular unit is a detector for its own special sequence. If
one such detector is present for each of the N (n) allowed
o’s, their outputs can then be supplied simultaneously to
each of the n —2 output neurons. As Fig. 9(b) indicates,
the latter have vanishing biases, and will invariably re-
port the correct 6; /7 if the N(n) input channels carry
weights 6,; /7 from each of the o-detector modular
units.

Each sequence detector requires two neurons, so the
total, including the output neurons, is 2N(n)+n —2 neu-
rons. The number of weighted connections is n +2 per
detector, hence (n +2)N(n) in all. The corresponding
figure of merit is defined to be the sum of these:

f=(n+4)N(n)+n—2. (A1)

The optimal network for n-mers cannot have its f larger
than this, so we have written inequality (5.3) in the text to
state this fact.

The family of networks just described represents sub-
stantial “overkill.” Indeed, their operation, though error
free by construction, might be viewed as a blind recita-
tion of the given database. The massive architecture em-
bodies no simplifying features based upon the molecular
folding principles. Only after stripping an #-mer network
down to its optimal figure of merit, can one expect to see
the architecture reveal the logic of folding.
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